

Webinar

Transitioning to Biofuels on bo Technical considerations

15 04 2024

Latitude N 55°30′23.8458″ Longitude E 9°43′44.7468″

Agenda

- 1. Introduction:
- Speakers
- Practicalities
- **02. Introduction of the Green COE**
- **03. Role of Biofuels**
- 04. Technical discussions
- 08. Why Dan-Bunkering is the preferred partner
- 09. Q/A

Welcome

Host & Presenter:

James Shiller Global Lead of New Fuels, Dan-Bunkering

Speakers:

Manja Ostertag Head of Biofuels, Bunker Holding

<u>Gunnar Kjeldsen</u>

<u>Biofuels Development Manager,</u> <u>Bunker Holding</u>

 \blacksquare Practicalities \triangleright

Instructions

- 1. GDPR: By attending this Webinar, **you have agreed** to our GDPR and privacy policy.
- 2. Recording: This webinar will be **recorded** and shared with you next week through email.
- 3. Polls: We will have a couple of polls during the webinar (*remember* to press 'done' to close the poll).
- 4. Questions: Ask questions via the **Q&A function** throughout the presentations or after the presentations by **unmuting yourself** and asking your questions.
- 5. Follow-up: Every attendee will receive a link to this presentation and recording next week.

Find all instructions in the Q&A section

E) hat	(2) Q&A	<mark>∂</mark> 2 People	Raise	(; € React) View	Notes	000 Polls	+ Apps	••• More	Camera	Ų Mic

The Q&A will show on the right side of your screen.

			- 🗆 X
nera P	Ų ſ↑ Mic Share	Start meeting	← Leave ∨
		Q&A	
		Start a discussi	on 🕑 ~ 🐯
		In review Publi	ished Dismissed
		e (2)	
		Show 4 comments	

After the presentations, the microphone will be enabled.

Ride the Next Wave

Biofuels

The maritime industry is facing a new reality

The energy transition in shipping is already underway, with logical pathways towards the decarbonization of all ship types and engine choices.

Short term

Conventional fossil-based bunker fuels continue as the most dominant products. These begin to be augmented with biofuels.

LNG is an available lower carbon alternative with a positive pathway to decarbonization.

Moreover, focus is on improving energy efficiencies.

Medium term

LNG & biofuel will begin to take a larger share of the fuel mix.

Low carbon methanol becomes available in multiple locations.

Challenges around scale of supply of low and zero carbon fuels will persist.

Long term

An uptake of carbon-neutral fuels will take place, once a clear and robust regulatory framework is in place.

Further development of blue and green sources of supply will facilitate the uptake of hydrogen-based fuels.

Vessel Orderbook

- LNG-fuelled ships continue "at a steady pace" and remains the dominant alternative fuel for vessels in operation and on order
- The majority of new contracts in 2023 consist of methanol-powered ships
- Conventional fuel, and hence potential biofuel blends, is still the fuel of choice for the global fleet

Note: Estimates based on internal study

Fuel mix trend

We expect that ~20% of the fuel mix will be

new fuels in 2030.

We believe biofuels will play a key role in reaching decarbonization targets for 2030 and beyond.

Dan-Bunkering

Relevant biofuels for the marine industry

3 categories of feedstocks

1st generation: Vegetable oil crops: e.g. soybean, rapeseed or palm oil, sugar cane, starch (food vs. fuel, iLUC)

2nd generation:

Waste feedstocks: e.g. used cooking oil, tallow (cat I and II), damaged crops and cover crops (for marine) Processable with existing technologies

3rd generation:

Waste feedstocks: e.g. algae, pome, tall oil, fatty acids, acid oils, SBEO Require new technologies and processing methods

Most relevant feedstock for Marine. Fuel EU Maritime excludes 1st generation feedstocks. IMO requires min. 65% GHG savings of biofuel basis full LCA.

Ride the Next Wave

What is biofuel

- A "drop-in" fuel that can replace MGO or HFO
- Looks and behaves like MGO
- A fuel that can be blended with a MGO or HFO
- Produced from sustainable feedstocks

11

Biofuels available for maritime

Carbon chain in vegetable oils

Used Cooking Oil, vegetable oils and animal fats are made form Triglycerides

Chemical formula for Rapeseed Oil = C57H10506 Chemical formula for typical MGO = C16H34

Biodiesel production

Fatty acid

	HVO (Renewable diesel)	FAME (Biodiesel, B100)
Process	Hydrotreatment	Transesterification
Oxygen content	0%	10%
Density @ 150C (kg/m3)	780	880
Energy/ Heating Value – LCV (MJ/kg)	44	37
Energy/ Heating Value – LCV (MJ/I)	34	33
Storage time/ Stability	≥6 months	≈6 months*
Cold Flow properties	Excellent (DMX)	Good (DMA summer)
Ignition/ Combustion properties (CN)	80	57

*Storage can exceed 6 months for B100 as long as good housekeeping is in place

Biofuel Quality

EN 15940 specification (Automotive fuels - Paraffinic diesel fuel with excellent cold flow properties)

EN 14214 specification (Diesel Engine spec)

- No Carbon Residue
- Metal and contamination limits
- 0.001% sulphur
- Oxidation Stability stricter requirements from the previous edition and enhancing additives are usually added at the production stage.
- Min Cetane No. 51
- Min Visc@40°C 3.50 mm2/s

3.

Ride the Next Wave

- Min. visc. 2.00 mm2/s
- Max. ash 0.01% m/m
- Min. Cetane Index 40

Source: Feb 2021, Study commissioned by EWABA and MVaK on the Conversion efficiencies of fuel pathways for Used Cooking Oil

Blending biofuel

- Blending is usually by volume (B24 is 24% volume of Biodiesel)
 - Max 25% by volume of Biofuel for IMO Annex I barges
 - Max 30% by volume to be considered a conventional fuel according to MEPC.1/Circ.795/Rev.7 (NOx emission limit)
- FAME and esp. HVO are compatible with MGO
- FAME is also compatible with HF0 (ULSF0, VLSF0, HSF0)
- Biofuel blends with MGO:
 - Both fuels should meet their respective specifications
 - MGO should be clear and bright, and Biofuel should have good Oxidation Stability.
- Biofuel blends with HFO:
 - Both fuels should meet their respective specifications
 - HFO should have a low TSA/TSP result (below 0.05%)
- ISO 8217:2024 will soon be available and will cover Biofuel and biofuel blends with fossil fuels

Final blend B24 VLSF0, B30 MG0 etc... Meeting ISO 8217

Biofuel quality – B100 and blends with MGO Microbial growth

- Biodiesels are hydroscopic and have all the necessary nutrients for microbial growth. If growth occurs, it will lead to filter clogging and sludge formation.
- Microbial growth also occurs in MGO. Vessels that have/had issues with growth in MGO will most likely face same issues with Biofuels unless tank(s) have been cleaned and better housekeeping/no water ingress is in place
- OEM approved Biocides (same as MGO) may be used

Biodiesel and compatibility of materials

Compatible	Not compatible			
Steel	Copper			
Aluminum	Brass			
Teflon	Bronze			
Viton	Lead			
Fiber glass	Zinc			
	Tin			
	NBR			
	Polypropylene			
	Polyvinyl			
	Tygon			
	EPDM			
	polyurethane			
/ave	D			

Fuel consumption

Fuel consumption depends on two main factors:

- 1. Lower Heating Value / Lower Calorific Value (LCV)
- 2. Density

The higher the LCV and density, the lower the fuel consumption

Fuel	Lower Calorific Value (MJ/kg)	Density @ 15°C (kg/m³)	LCV (MJ/I)	% vol diff from MGO	% vol diff from VLSF0
MGO	43	860	37	-	-6%
VLSFO	41.5	950	39.4	+6%	-
HVO	44	772.7	34	-8%	-14%
B100 Netherlands	37	891.9	33	-11%	-17%
B30 MG0	41	870	35.7	-3.5%	-9.5%
B24 VLSFO Singapore	40	930	37.2	0%	-6%

Note: Actual consumption seems to be lower than theoretical consumption of biofuels due to less CO and improved engine efficiency (higher cetane number).

B30 MG0 trials indicated only 1.5 to 2% increase (by volume compared to MG0) B24 VLSF0 trials indicated 3% increase by volume compared to VLSF0)

Biofuel deliveries

IN FLOW PORTS AND THE REST OF THE WORLD

Biofuel Trials

B100 Bunker One

- For almost one month, Bunker One has supplied B100 biofuel to Color Line's SuperSpeed 1 and 2 ferries travelling between Hirtshals in Denmark and Larvik and Kristiansand in Norway. With this switch to biofuel, Color Line's two passenger ferries have reduced CO2 emissions by approximately 85% on average on the biofuel quantities used.
- The numerous benefits of the B100 biofuel, such as CO2 emissions reduction, energy efficiency, **and no required modifications to vessel engines**, have been the primary motivation behind Color Line's piloting of low-carbon biofuel. Equipped with technical expertise and extensive know-how on lower carbon fuels, compliance, and the regulatory landscape for shipping, Bunker One managed to find the best solution that accommodated Color Line's needs.

B100, HVO and Biodiesel blends with MGO

Storage

- To be stored in MGO tanks since B100 and HVO have similar fuel characteristics as MGO
- Fuel temperature to be kept 10°C above the Pour Point and at least 5°C above CFPP during transfer.
- If stored in fuel oil tanks, the solvancy of biodiesel can dislodge fuel debris and other contaminants that have accumulated over time.

Fuel Treatment

- Same procedures as with a MGO
- If a separator is used, water washing / conditioning washing is not recommended. If used, it could;
 - create soap during separation
 - cause bacterial growth in fuel treatment plant

DMA 0.10% Averages									
Port	Quarter	Visc @ 40°C (cSt)	Dens @ 15°C (kg/m3)	Sulphur (% m/m)	Cetane Index	Acid Number (mg KOH/g)	CFPP (°C)		
	Q2, 2022	3.57	855.6	0.06	48	0.03	-5		
	Q3, 2022	3.73	856.9	0.06	48	0.03	CFPP (°C) -5 -4 -4		
Global	Q4, 2022	3.78	856.6	0.06	49	0.05	-4		
	Q1, 2023	3.82	856.0	0.06	49	0.06	-3		
	Q2, 2023	3.82	858.3	0.06	48	0.05	-3		

Source – Bureau Veritas, VeriFuel

Biodiesel with HFO

Storage

26

- To be stored in heated fuel oil tanks
 - Fuel temperature to be kept as low as possible but always 10°C above the Pour Point
 - Drain regularly to remove water
 - Do not mix with another fuel

Fuel Treatment

- Same procedures as with a Fuel Oil
 - Do not overheat, esp. with a VLSFO.
- If a separator is used, water washing / conditioning washing is not recommended. If used, it could;
 - create soap during separation which can cause operational issues
 - cause additional sludge formation

Benefits of Biofuels for Marine

Globally tested by shipping companies and bunker suppliers.

k

Approved by most OEM & accepted by IMO in blends up to B100 without approval from flag state

ISCC certification ensures compliance with sustainability criteria throughout the entire supply chain

Excellent fuel characteristics

- Better ignition and combustion properties
- ✓ Improved lubricity and good cold flow properties
- ✓ Reduction in Particulate Matters and Black Carbon
- ✓ Reduction in GHG emission

B20-B30 pathway to IMO and FuelEU Maritime compliance

Helps fulfil customers ESG targets and sustainability linked loans.

Why is Dan-Bunkering your preferred partner

The microphone is open.

Thank you